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1•  Introduction and Summary 

Sir R.A. Fisher (1929, 1939, and 1940) proposed a test for periodicity 

in a time series based on the ratio of the maximum to the sum of the 

ordinates of the spectrogram or periodogram. In this paper I propose 

a one-parameter family of tests that contains Fisher's test as a special 

case. Although Fisher's test is optimal in the case of a simple periodicity, 

a test can be chosen from this family that loses only negligible power in 

this case 2nd yet can gain substantial power in the case of compound 

periodicity. This test is not based just on the largest spectrogram 

ordinate, but adaptively and continuously on all large values. 

Section 2 contains background information, notation, and a review 

of Fisher's test. The new tests are proposed in section 3 together with 

a heuristic justification for their consideration. Critical values are 

calculated and tabled in section 4S having been obtained through a 

duality discovered by Fisher (1940) and using my recent work in geo- 

metrical probability (Siegel, 1978). An example of the use of the tables 

is also given in section 4. Results of a Monte Carlo power study are 

presented in section 5, indicating the strengths and weaknesses of 

these procedures, and providing a method of selecting a good test from 

this family. Finally, in section 6, the methods are applied to measurements 

of the magnitude of a variable star in order to show that these potential 

power gains can be realized in practice. 
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2. Background, Notation, .and Review of Fisher's Test 

Consider a series u., (t=l,...,N), observed at equal intervals of 

time and arising from the model 

u
t 

= ct + Et   * = 1»"*»N (2J) 

where 5. represents the unobservable, fixed, "true" value at time t of 

the phenomenon under study, and e. is the random error, due to measure- 

ment and/or other sources. We will assume independent identical Normal 

distributions for the errors: 

Et - N(0,o
2) (2.2) 

where a2 is unknown. We are interested in statistical inference about 

the behavior of the sequence £., particularly regarding periodic 

activity. The null hypothesis is 

0"   1 ~ '*" ~ ^N " \£'3) 

For more background about this model, the reader is referred to 

section 4.3 of Anderson (1971), to section 5.9 of Bloomfield (1976) and 

to Fisher (1929, 1939, and 1940). 

In this paper, we will consider only frequencies whose periods 

evenly divide the total series length and we suppose that there is no 

a priori reason to exclude certain frequencies from consideration. In 

what follows, we will assume that N is odd and define n by 

N = 2n + 1 . (2.4) 



The method of Fisher (1939) for handling the case of N even may also be 

used with the methods proposed in this paper. 

Define the Fourier coefficients in the usual manner: 

N 
a0 ~ *- 

' t=l 

= R lh <2'5> 

a. 
3 

/2    v ,     „-;2'irjt% 
= /N ,lMCO*{   N   } 

b. 
3 "7N A?tS'n(   N "} 

(2.6) 

(2.7) 

where j = 1, — ,n. This uniquely decomposes the sequence of unknown 

means into periodic components: 

/r* n       . 
£ y [a.cos(^i) + b.sin(^Lli)].       (2.8) 

'X        u   N -Lt     3       v N     J    N 
3=1 

The squared amplitude at frequency j/N is 

R2 = a* + b2. . (2.9) 
3   J   3 

The null hypothesis (2.3) may be equivalently expressed as 

H„: all R2 = 0. (2.10) 

We are interested in all departures from H„, but of particular 

interest are the class of alternatives in which there is periodic 

activity at one frequency only. These will be called simple periodicities 

and will be denoted 

H.: R2 > 0, all other R? = 0. (2.11) 
3 3 1 
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Alternatives of periodicity at two or.more frequencies will  be called 

cpjiißound_ periodicities.    Of particular interest are those representing 

activity at exactly two frequencies: 

H.. :  R2. > 0, R2 > 0, all other R? = 0. (2.12) 0^      3 K l 

Estimates a. and b. are obtained by replacing the unobservable 

5 by the observed series u, in equations (2.6) and (2.7), and lead to 

the spectrogram values 

R2 =  a2 + b2. (2.13) 
3        3        3 v   ' 

To eliminate the effect of a2, we normalize these so that they sum to one: 

n ~ 
(. =  R2 / I  R? (2.14) 
3        3      1=1 i 

and we base our inferences on (Y, ,...,Y ). Fisher (1940) notes that 
f    n 

Y. is the ratio of the sum of squares due to frequency j/N to the total 
ü 

sum of squares; this is because 

I  R- = I  (ut-0)
2. (2.15) 

i=l 1  t=l 

Fisher's test is based on the statistic 

S =   max   Y, (2.16) 
l<j<n   y 

and rejects Hn when S exceeds the appropriate critical value, gF. In 

theorem 4.3.6, section 4.3.4 of Anderson (1971), it is noted that Fisher's 

test is the uniformly most powerful symmetric invariant decision procedure 

against simple periodicities. 
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3. The Procedure 

There is no reason to suppose that the optimality property of 

Fisher's test for simple periodicity extends to compound periodicity, 

in which there is activity at several frequencies. In this section we 

give a heuristic argument for why it will not be optimal, and introduce 

a family of test statistics that should overcome this problem. 

Because of the normalization in (2.14), any increase in a smaller 

Y. will tend to decrease their maximum, S, and thus lower the power of 
J 

Fisher's test» This is illustrated in figure 3.1. In the case of 

simple periodicity only Y-, gives a large contribution, which exceeds 

the critical value g^, and Fisher's test rejects. In the case of 

compound periodicity, Y1 and Y» are both large, but Yn is therefore 

reduced; now neither exceeds gf  and Fisher's test no longer rejects the 

null hypothesis. 

In order to remedy this situation, wc should use a test statistic 

based on all large Y., instead of only their maximum. Such a continuous 

adaptive statistic may be constructed by choosing a threshhold value g<9c- 

For each Y. that exceeds g, sum the excess of Y. above g. Setting 

X  = g/gF, the proposed statistic is 

n 

j 
Tx = l_  (YrXgF)+ (3.1) 

where (t)    = max(t,0) is the positive-part function.    I-L will  be 

rejected when T    is large; critical  values are found in section 4. 
A 

The choice of A, between 0 and 1,  is to be made from theoretical 

considerations and not from the data itself.    X = 1 yields Fisher's test 



Y. 

Y. 
3 
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Figure 3.1.    A hypothetical  spectrogram for 

simple and compound periodicities. 

1_ 
—*•--•    •    »   *>   ft 

2 3 4 

simple periodicity 

# 

» 

2 3 4 

compound periodicity 



because T-j > 0 if and only if some Y. exceeds g   A choice of A near 

1 would be used when at most simple periodicities are expected. A 

smaller value of A would be used when compound periodicities are a 

possibility. Further guidance in choosing A is found in section 5. 

A hypothetical spectrogram under H,« is shown in figure 3.2. 

Fisher's test, based on the largest Y., does not reject because no 
•J 

Y. exceeds the critical value gp. A test based on T may very well 

reject, because it is based on two large terms, T, = (Y,-AgF) + (Y„-AgF) 

allowing both large Y. to be counted. 
u 

4. Critical Values for 7... 

7he duality discovered by Fisher (1940) between the distribution 

of the statistic S and the probability of covering a circle with random 

arcs as treated by Stevens (1939) may be exploited here in order to 

obtain the distribution of the proposed statistic T under the null 

hypothesis. My recent work in geometrical probability (Siegel, 1978) leads 

directly to an exact formula for this distribution, which is presented 

in this section together with a table of critical values for T and 

an example of their use. 

Fisher's duality is nicely explained in section III.3 of volume II 

of Feller (1971). The key fact is that Y, ,...,Y have the same joint 
i     n 

distribution as the lengths of the n gaps produced when n points are 

independently and uniformly placed on the edge of a circle of circumference 

one. Figure 4.1 graphically illustrates this geometrical configuration. 

To make the connection with Stevens' problem, place n arcs of length g, 

extending counter-clockwise from each of the n random points, 
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Figure 3.2. A hypothetical spectrogram for 

comparison of the statistics S and T > 
A 

X = .6, in the case of compound periodicity. 

9c 

9 = -6gr 

1 -3 
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Fiqure 4.1 

Representation of Y,j--.,Y   &s spacings between ordered uniform points 

on the circle, in the case n=5- 
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as illustrated in figure 4.2. From this one can see, for example, 

that the probability that no Y. exceeds g is equal to the probability 

that n random arcs of length g completely cover the circle. 

The corresponding key observation to be made in order to obtain 

the distribution of T. is: 
A 

T, has the same distribution as that 
A 

proportion of the circle that is left 

uncovered by the union of n random arcs 

of length g = Agp. 

This may be seen from figure 4.2, because (Y.-g) is precisely that 

proportion of the circle within the gap of length Y. that is not covered 

by any arc. In. the language of coverage problems, the uncovered 

proportion is called the vacancy. Its distribution in this case is 

Known (Siegel, 1978) and is given by 

pH (v
t} = 5 V (-i}k+£+1(o)(V)(nk1)tk(1-u%-tCk"1   t4-1) "0   A 1=1  k=0 * 

Critical  values t.  for T., computed from (4.1), are listed in 
A        A 

tables 4.1 through 4.4. These cover significance levels .05 and .01, 

values of n from 5 through 50, and A = .2, .4, .6, and .8. If 

A = 1.0, we reject if T, > 0; this is Fisher's test. 

As an example of the use of these tables, suppose we have a time 

series of length N = 35. Then we use n = 17 because 2n+l =35. If 

we decide to use level .05 and A = .6, we see from table 4.1 that the 

initial threshhold is g = AgF = .183. We then compute 
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Figure 4.2 

Yl,'**',Yn Senerate n random arcs of length g on the circle, 

in the case n=5. 
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Table4.1.  Level .0?  critical  values t^ f0r T, f     for several 

values of  A  and for n = 5 through 25» 

n &P •8% \8 
• 6c t.6  . '% t.h .2gp 12 

5 -68if • 5^7 .137 .410 .274 .274 .412 .137 .616 

6 .616 .493 -123 .370 .246   • .246 .381 » X«-Jy .587 

7 .561 .449 .112 «337 .225 .224 .356 .112 • 564 

8 .516 .413 .103 .309 ,208 .206 • 334 .103 • 5Mi- 

9 .1*77 .382 »0955 .286 .193 .191 .316 .0955 .528 

10 .445 .356 .0891 .267 .181 .178 .301 .0890 • 313 

11 .334 .0835 «,250 .171 .167 .287 .0834 .500 

12 • 392 .314   • .0787 • t-Dj .162 .157 .275 .0785 " .488 

13 .371 .297 »0744 „223 .154 .148 .265 .0742 .478 

lit 052 .281 .0707 .211 . 147 .141 .253 .0703 .468 

15 .268 -.0673 .201 .lllO .134 .247 .0669 .459 

16 -319 -   -255 .0642, .192 .134 .128 .239 .0638 .451 

17 .305 .gVl .0615 .185 .129 .122 .232 .0611 .444 

18 .293 .234 .0590 .176   • .124 .117 .225 .0585 .437 

19 .281 .225 .0567 .169 .120 .112 .219 .0562 .430 

20 .270' .216 „0546 .162 .116 .108 .213 .0541 .424 

21 .261 „203 ,0527 .156 .112 .104 .208 .0521 .419 

22 «252 „201 ,0509 .151 .109 .101 .203 .0503 .413 

23 .243 »195 '. 0492 »146 .106- .0973 .199 .0486 .408 

24 .235 • l88 . 01*77 .IM .103 .0941 -195 .0471 .404 

25 »228 .182 .0462 .137 .0997 .0912 .190 .0456 -399 
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Table 4.2. Level .05 . critical  values t  for T,, for several 
A       A 

values of A* and for n = 26 through 50. 

n S •8gF \B. • 6gF \6 •*«r \4 •2gF 
—L£. 

26 .221 .177 .0449 .133 .0971 .0885 .187 .0443 .395 

27 .215 .172 .0436 .129 .0946 .0859 .183 .0430 •391 

28 .209 .167. .0424 .125 .0923 • 0835 .180 .0418 .387 

29 .203 .163 .0413 .122 .0901 .0813 -177 .0406 • 383 

30 .193 .158 .0402 .119 .0880 .0791 -173 .0396 .380 

31 .193 .154 . 0392 .116 .0861 .0771 .171 .0386 .376 

32 . JLl-lO .150 .0383 .113 .0842 .0752 .168 .0376 .373 

33 .134 .147 .0374 .110 .0824 .0734 .165 • 0367 .370 

34 -179 .143 .0365 .108 .0807 .0717 .163 .0358 •367 

35 • — . s .140 .0357 .105 .0791 .0701 .160 .0350 .364 

36 -171 .137 .0349 .103 •077b .0685 .158 .0343 .361 

37 .163 .134- .0342 .101 .0761 .0670 .156 .0335 .359 

38 .164 .131 .0335 .0984 .0747 .0656 .154 .0328 • 356 

39 .161 .129 .0328 .0964 .0734 .0643 .151 .0321 • 353 

40 -1:7 .126 .0322 .0944 .0721 .0630 .150 .0315 .351 

to. .154 .123 .0316 .0926 .0703 .0617 .148 .0309 .349 

42 •151 .121 .0310 .0908 .0696 .0605 .146 .0303 .346 

43 .143 .119 .0304 .O89I .0685 .0594 .144 .0297 .344 

44 .146 .117 .0298 .0874 .0674 .0583 .142 - .0292 .342 

45 .143 .114 .0293 .0859 .0663 .0572 .141 .0286 .340 

46 .141 .112 .0288 .0843 .0653 .0562 -139 .0281 .338 

47 .133 .111 .0283 .0829 .0643 .0553 .138 .0276 .336 

48 .136 .109 .0279 .0815 .0634 .0543 .136 .0272 .334 

49 .134 -.107 .0274 .0801 .0625 .0534 .135 .0267 .332 

50 .131 .105 .0270 .0783 .0616 .0525 .133 .0263 . .330 
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Table 4-3- Level .01   critical  values t^  for T^,  for several 

values of A }   and for n = 5 through 25. 

n •8% *.8 •6gF *.6 •% \u •2sF \2 

.709 .631 .158 .473 .315 .315 .473 .158 .642 

6 .722 .577 .144 .433 .289 .289 .433 .144 .610 

7 .664 • 532 .133 • 399 .266 .266 -399 .133 .580. 

8' .615 A92 .123 .369 .246 .246 .372 .123 •555 

9 -573 .458 .115 .344 .229 .229 .349 .115 .534 

10 -536 .429 .107 .322 .214 .214 .329 .107 .516 

11 .403 .101 .302 .202 .201 .313 .101 .500 

12 . 1J.~ .380 • .0950 .285 .190 .I90 .298 .0950 .485 

13 ?. ZT*"* .360 .0900 .270 -180 .l80 .285 .0900 .472 

14 .427 .342 .0833 .256 .172 • .171 .273 .0854 .461 

15 .^07 .326 .0814 .244 .164 .163 .262 .0814 .450 

16 .359 .311 .0777 .233 .137 • 155 .253 .0777 .440 

17 .372 .297 .0744 .223 .130 .149 .244 .0744 .431 

18 -3=7 .285 .0714 .214 .11*4 .143 .236 .0713 .423 

19 .3-3 .274 .0686 .206 .139 .137 .229 .0685 .415 

20 .330 .264 .0660 .198 .134 .132 .222 .0659 .403 

21 .313 .254 .0636 .191 .129 .127 .215 .0636 .401 

22 007 .245 .0614 .184 .125 .123 .210 .0614 • 395 

23 .297 .237 .0594 .178 .121 -119 .204 - .0593 .389 

24 .287 .230 ..0575 .172 .117 .115 .199 .0374 .383 

25 .278 .223 -0557 .167 .114 .111 .194 .0556 .378 
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Table 4.4.  Level .01  critical   values t^  for-T^,  for several 

values of X.,    and for ri = 26 through 50. 

11 % •8gF .8 •6sF t , 
.0 

•4gp \h °2sF li 

26 .270 .216 .05 »a .162 .xxo .108 »X90 .0540 .373 

27 .262 .210 .0525- .157 .107 -105 .185 .0524 .368 

28 .255 .204 .0511 .153 .X05 »X02 .X8X .O509 .364 

29 -248 .198 .0497 -149 -X02 .O99I »X78 ' .0496 .359 

30 »241 .193 .0484 .145 .0993 «O965 .X74 .0483 • 355 

31 -235 .188 .0471 .141 .0969 .0943 -X7X .0470 -35X 

32 OOQ. .183 .0460 .138 „0946 .0917 .X67 »0458 .348 

53 .22^ .0449 .134 »0925 .0395 .X64 .0447 .344 

34 .213 .175 . 0438 .131 .0904 » UÖ {-4 .X6X .0437 .34X 

35 »213 . 171 *0428 .128 .0884 .0854 .159 .0427 .337 

36 .209 • —o7 ,0419 -125 .0866 .0334 .156 .04X7 -334 

37 .204 • lo^ .o4io .122 .0848 »0816 -153 .0408 .33X 

38 .200 . loO .o4oi .120 .0831 .0799 .X5X .0399 .328 

39 .196 .156 -0393 .117 .0815 .0782 .X48 .0391 .325 

40 .192 .153 .0385 .115 '.0799 .0766 .X46 .0383 .322 

41 .188 .150 .0377 .1X3    . .0784 .0751 .X44 .0376 .320 

42 .184 .147 .0370 .1X0 .0770 .0736 .X42 .0368 .317 

43 .181 .144 .0363 .108 .0756 .0722 .140 .036X .3X5 

44 .177 .142 .0356 .106 .0743 .0709 .X38 .0355 .3X2 

45 .174 .139 .0350 .X04 .0730 .0696 .X36 .0348 .3X0 

46 .171 .137 .0343 • X03 .0718 .0684 .X34 .0342 .308 

47 .168 .134 .0338 .xox .0706 .0672 .X33 .0336 .306 

48 .165 .132 .0332 .0990 00695 ,0660 .X3X . 0330 .303 

•49 .162 .130 .0326 »0973 .0684 .0649 .129 .0324 • 30X 

50 .160 .128 .0321 .0957 .0673 .0633 .-128 .03x9 .299 
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17 

J-1 

which includes only those terms for which Y. > .183. T r  is then 

compared to the critical value t ß = .129, also found in table 4.1. 

If T 6 > .129, then we reject the null hypothesis. 

5. Power Study of Tests Based on T,. 
 A 

The heuristic arguments of section 3 suggest that the tests based on 

T. will be more powerful than Fisher's test against alternatives of 

compound periodicity. The results of a Monte Carlo power study are 

now presented that not only confirm this, but also yield two further 

dividends. First, when Fisher's test is optimal, we find only a 

negligible loss of power when using T, instead, over a wide range of 

values of A. Second, the graphs of this section suggest a good choice 

of X to use in practice. 

When the null hypothesis fails to hold, the spectrogram ordinates R* are» 

up to scale, independently distributed as noncentral Chi-Squares with two 

degrees of freedom and noncentrality parameters R^3 the squared am- 

plitudes at the frequencies j/N (j=l,...,n). Using the computer, the 

proper pseudorandom noncentral Chi-Squares were generated. From these the 

statistics T. were calculated, and it was noted whether each test rejected or 

not. Each power estimate is based on 10,000 repetitions, and thus has a 

standard deviation of less than .005, as calculated for the binomial distri- 

bution. Computations were done on Stanford University's IBM 370 and on the 

University of Wisconsin's Univac 1110 computers, using the pseudorandom 

number generators RAND.K and RANUN respectively. 

The results are presented graphically, for significance levels 

.05 and .01 at n = 10 and 25. Each curve is a graph of the power of T 
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as a function.of A in the case as labelled. Note that the power of 

Fisher's test is the height of the extreme right of each curve, 

corresponding to A = 1.    The presentation is simplified because the 

power remains fixed when the amplitudes R. are permuted among the 

frequencies j/N. Thus power is a function of the significance level, 

the values of n and As and a list of amplitudes. The actual 

assignment of amplitudes to frequencies need not be specified. 

The case of simple periodicity Is shown in figure 5.1 for various 

amplitudes of periodic activity at one frequency only. Fisher's test 

is optimal fn this case, as noted in section 25 and indeed the curves 

do slope downwards to the left, illustrating loss of power as we 

depart from A = K Note., however, that the curves are nearly hori- 

zontal over the range .5 < A < 1.0, indicating practically no loss of 

power in this range if we use T instead of Fisher's test. In fact, 

only a small amount of power is lost for A as low as .4; substantial power 

loss begins for A in the range „2 to .4. Of course, we don't want to 

choose A too close to zero because Tf Is identically ones and data- 

independent tests are generally frowned upon. 

Several cases of compound periodicity are considered. Power in 

the case of equal amplitudes at each of two frequencies is illustrated 

in figure 5.2. The fact that these curves now slope upwards to the left 

(when .4 < A < 1.0) indicates that one gains substantial power in these 

cases by departing from Fisher's test and choosing A smaller than one. 

These gains continue down to A = .4, after which there eventually must 

be a loss of power. 
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Figure 5.1. Estimated power of T as a function of X under simple 

periodicity of amplitude R,, indicated next to curve. 
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n = 10 

Figure 5.2. Estimated power of T as a function of X under compound 
A 

periodicity at two frequencies with equal amplitudes R, and R„, 
1     c 
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Power in the case of unequal amplitudes at each of two frequencies 

is illustrated in figure 5.3; one amplitude is twice the other. Again 

the curves generally slope upwards to the left (when .6 < X <  1.0), 

but the power increases available are less dramatic here than they were 

in the case of equal amplitudes (figure 5.2). 

Power for contributions at three frequencies is illustrated in 

figure 5.4 for the case of equal amplitudes, and in figure 5.5 for 

the case of unequal amplitudes having the proportions 1:2:3. We see 

again thair power generally increases as X decreases from 1.0 to .4, 

sometimes dramatically,as in figure 5.4 when n = 10. 

The -rain conclusion to be drawn from this section is that substantial 

power gains are often available by using T, instead of Fisher's test, 

without sacrificing significant pov/er in the case of simple periodicity 

when Fisher's test is optimal. A conservative choice for X  is .6; a choice 

of X = .4 often allows even larger power gains under compound 

periodicity at the cost of a small but significant power loss under 

simple periodicity. 
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Figure 5.3. Estimated power of T as a function of A under compound 

periodicity at two frequencies with unequal amplitudes 

R, and R , indicated next to curve. 
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Figure 5.4. Estimated power of T, as a function of A under compound 

periodicity at three frequencies with equal amplitudes 

R,,R?; and R_, indicated next to curve. 

n = 10 

1.0 level .05 

.5 t 

5,5,5 

4,4,4 

3,3,3 

2,2,2 

1.0 r level .01 

1.0 
0 
• 0 

3,3,3 

r^4  i—* x 
1.0 

1.0 

n = 25 

1.0 

5,5,5 

4,4,4 

3,3,3 

   2,2,2 

-i *     • _, X 
1.0 

6,6,6 

5,5,5 

4,4,4 

3,3,3 

-. X 
1.0 



-23- 

Figure 5.5. Estimated power of T. as a function of X under compound 

periodicity at three frequencies with unequal amplitudes 

R-. ,Rp, and R~, indicated next to curve. 
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6. Application: Variable Star Data 

In order to demonstrate that these potential power gains can be 

realized in real data situations» we now apply them to the analysis of 

the magnitude of a variable star. The data is taken from pages 349-352 

of Whittaker and Robinson (1924), and has been analyzed in chapters 2 

and 5 of Bloomfield (1976). This example is appropriate because it is 

an essentially closed physical system in which periodicity is likely, 

and we have no auxiliary information favoring some periods over others. 

We will analyze N = 21 measurements of the magnitude (thus n = 10), 

obtained from observation at ten day intervals. The raw data is shown 

in figure 6.1. The spectrum was calculated as outlined in section 2, and 

the normalized spectrogram is shown in figure 6.2, normalized so that 

the ordinates sum to one. We see two strong peaks, at periods of 

about 30 and 23 days. This is not surprising because the raw data in 

figure 6.1 do seem to exhibit a pattern of "beats" characteristic of 

the superposition of two close frequencies. 

We wish to test to see if these peaks represent true periodic 

fluctuations in the magnitude of the star, or if they might have arisen 

from purely random fluctuations. Tests for periodicity may now be 

compared. Table 6.1 shows the outcome of level .01 tests; all level 

.05 tests did reject I-L. In the level .01 case, we see that Fisher's 

test (based on T, with X  = 1) does not reject hL, largely for the 

arguments presented in section 3. However, the tests based on T. do 

reject H^ when X = .6, .4, and .2, and accept Hf, when X =  .8. Recall 

from section 5 that X =  .6 and possibly X =  .4 were the recommended 

values, and these were not chosen from the data! 
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Figure 6.2. Normalized spectrogram for variable star data 
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Table 6.1.    A comparison of tests for periodicity in the variable 

star data, at level   .01.    X = 1.0 corresponds to Fisher's test. 

1.0 

.8 

.6 

.4 

.2 

*9F 

.536 

.429 

.322 

.214 

JA 

o 

.065 

„242 

.457 

.671 

0 

,107 

.214 

,329 

,516 

reject hL? 

no 

no 

yes 

yes 

yes 
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If we consider the daily observations (600 instead of 21 points) 

as analyzed in Bloomfield, we see that there really is periodicity, and 

hence we do hope to reject the null hypothesis. Thus the extra power 

gained by using T with X  = .6 or .4 instead of Fisher's test can be 
A 

quite useful in practice. 
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